日本问题研究 ›› 2018, Vol. 32 ›› Issue (6): 70-77.DOI: 10.14156/j.cnki.rbwtyj.2018.06.008

• 学术动态 • 上一篇    下一篇

基于大数据的日本学研究现状分析

赵晋平,王婧   

  1. 武汉理工大学 外国语学院,湖北 武汉430070
  • 收稿日期:2018-09-21 出版日期:2018-12-25 发布日期:2018-12-25
  • 作者简介:赵晋平(1974—),男,山西清徐人,硕士生导师,研究员,主要从事日本科技政策和日本教育研究。
  • 基金资助:
    武汉理工大学自主创新研究基金项目(2018IVA077);武汉理工大学研究生优秀学位论文培育项目(2017-YS-094)

An Analysis of Japanese Studies Based on Big Data

ZHAO Jinping, WANG Jing   

  1. School of Foreign languages, Wuhan University of Technology, Wuhan,Hubei,430070,China
  • Received:2018-09-21 Online:2018-12-25 Published:2018-12-25

摘要: 文章运用大数据手段,选取《日本学刊》和《日本问题研究》于2010年-2017年所刊登论文的关键词,进行相异系数矩阵分析和聚类分析,并通过绘制出热点知识图谱,指出近年日本学研究整体趋势的落脚点在政治研究,主要集中在中日关系研究上,但还未形成系统的研究范式。今后有必要运用跨学科和多学科的研究方法,把握事物之间的关联,发现新规律和新方法。同时,要主动运用数据思维来解决日本学研究所面临的理论和实践问题,立足日本学研究的国际前沿并聚焦国家需求,提出原创性理论贡献,进而构建全方位、全要素的日本学研究体系。

关键词: 大数据, 日本学研究, 相异系数矩阵分析, 聚类分析, 知识图谱

Abstract: Using large data, this paper selects the keywords of papers published in Japanese Studies and Japanese Research from 2010 to 2017 for dissimilarity coefficient matrix and clustering analysis, and draws a hotspot knowledge map, pointing out that the overall trend of Japanese research in recent years is based on political research, mainly concentrated in the study of SinoJapanese relations. However, no systematic research paradigm has yet been formed. It is necessary to use interdisciplinary and multidisciplinary research methods to grasp the relationship between things and discover new laws and methods in the future. At the same time, we should take the initiative to use data thinking to solve the theoretical and practical problems faced by Japanese research. We should also make original theoretical contributions based on cutting edge research on Japanese studies and our national needs so as to build a comprehensive, total factor Japanese research system.

Key words: big data, Japanese studies, dissimilarity coefficient matrix analysis, cluster analysis, knowledge map

中图分类号: